C(25)	0.177(1)	0.1280 (6)	0.560(1)	0.066 (5)
C(26)	0.370(1)	0.0974 (6)	0.473(1)	0.060 (5)
C(27)	0.125(1)	0.0415 (8)	0.378(1)	0.13(1)
O(1)	0.1584 (9)	0.1267 (8)	0.6376 (8)	0.110 (6)
O(2)	0.4687 (8)	0.0781 (5)	0.505(1)	0.098 (5)
O(3)	0.074 (1)	-0.0063 (9)	0.361 (1)	0.110 (7)

Table 2. Selected geometric parameters (Å, °)

Re(1)—P(1)	2.442 (2)	Re(1) - Br(1)	2.644 (2)
Re(1)-P(2)	2.445 (3)	Re(1)-C(25)	1.97 (1)
P(1) - C(1)	1.806 (8)	Re(1) - C(26)	1.98(1)
P(1)—C(7)	1.811 (8)	Re(1)C(27)	1.95(1)
P(1) - N(1)	1.70(1)	C(25)—O(1)	1.11 (2)
P(2)—C(13)	1.807 (9)	C(26)—O(2)	1.11(1)
P(2)—C(19)	1.816 (9)	C(27)—O(3)	1.09(2)
P(2)—N(1)	1.682 (8)		
Br(1)Re(1)C(27)	178.22 (6)	Re(1) - C(25) - O(1)	175(1)
C(25) - Re(1) - C(26)	94.2 (5)	Re(1) - C(26) - O(2)	180(1)
P(1) - Re(1) - P(2)	66.8 (1)	Re(1) - C(27) - O(3)	171(1)
Re(1) - P(1) - C(1)	122.3 (3)	Re(1) - P(2) - C(13)	119.4 (3)
Re(1) - P(1) - C(7)	122.2 (2)	Re(1) - P(2) - C(19)	125.1 (3)
Re(1) - P(1) - N(1)	93.6 (3)	Re(1) - P(2) - N(1)	93.8 (3)
C(1) - P(1) - N(1)	107.0 (4)	C(13) - P(2) - N(1)	107.7 (4)
C(7) = P(1) = N(1)	108.3 (4)	C(19) - P(2) - N(1)	107.0 (4)
C(1) - P(1) - C(7)	101.8 (4)	C(13)P(2)C(19)	101.9 (4)
P(1) - N(1) - P(2)	105.6 (5)		

Intensities were corrected for Lorentz and polarization factors and for absorption. The structure was solved by the heavyatom method and final scale factor, atomic coordinates and displacement parameters were obtained by full-matrix leastsquares refinement. Phenyl groups were refined as rigid bodies (C-C = 1.395 Å) and H atoms (apart from that bonded to N, which was not considered in the calculations) introduced in calculated positions (C-H = 1.08 Å) with a fixed displacement parameter ($U_{iso} = 0.08 Å^2$). All calculations were performed on a MicroVAX computer.

Data collection: Philips diffractometer software. Cell refinement: Philips diffractometer software. Data reduction: local program. Program(s) used to solve structure: *SHELX*76 (Sheldrick, 1976). Program(s) used to refine structure: *SHELX*76. Molecular graphics: *ORTEPII* (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters. Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1196). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Square, Chester CH1 2HU, England.

References

- Bullen, G. J. & Dann, P. E. (1974). J. Chem. Soc. Dalton Trans. pp. 705-709.
- Deutsch, E., Libson, K., Jurisson, S. & Linday, F. (1983). Prog. Inorg. Chem. 30, 75–139.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rossi, R., Marchi, A., Magon, L., Duatti, A., Casellato, U. & Graziani, R. (1989). Inorg. Chim. Acta, pp. 23–28.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Ul-Haque, M. & Caughlan, C. N. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1101–1104.
- Vilkov, L. & Khaikin, L. S. (1975). Top. Curr. Chem. 53, 25-70.

Wilson, R. D. & Bau, R. (1974). J. Am. Chem. Soc. 96, 7601-7602.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1996). C52, 852-854

1-Carbonyl-2,2-*cis*-dicarbonyl- μ -formato-1*C*:2*O*,*O'*-1-nitrosyl-1-(η^5 -pentamethylcyclopentadienyl)-2,2-*trans*-bis(triphenylphosphine)dirhenium

DOROTHY H. GIBSON,* RENAUD F. BARDON, JAYESH M. MEHTA, MARK S. MASHUTA AND JOHN F. RICHARDSON

Department of Chemistry and Center for Chemical Catalysis, University of Louisville, Louisville, KY 40292, USA

(Received 4 July 1995; accepted 6 October 1995)

Abstract

The title compound {systematic name: tricarbonyl- $1\kappa C$, $2\kappa^2 C - \mu$ -formato $(2 -) - 1\kappa C : 2\kappa^2 O$, O'-nitrosyl- $1\kappa N$ -[$1(\eta^5)$ -pentamethylcyclopentadienyl]bis(triphenylphosphine)- $2\kappa^2 P$ -dirhenium}, [Re₂(CO₂)(NO)(C₁₀H₁₅)-(C₁₈H₁₅P)₂(CO)₃], has a carbon dioxide ligand bridged between two octahedral rhenium centers. The presence of two triphenylphosphine ligands, which are *trans* to each other on Re(2), alters the orientation of the bridging CO₂ ligand relative to ligands bound to Re(1) in this compound as compared with the analog having a single triphenylphosphine ligand on Re(2).

Comment

As part of a general study of the properties of compounds having CO_2 bridged between two metal centers (Gibson *et al.*, 1995), we prepared the title compound, (I), in order to compare its spectral and structural properties with the analog having a single triphenylphosphine ligand on Re(2), CpRe(CO)(NO)–(CO₂)– Re(CO)₃(PPh₃), (II), (Gibson, Mehta, Ye, Richardson & Mashuta, 1994).

The principal structural difference between (I) and (II) is the orientation of the plane containing the bridging CO₂ group relative to ligands bound to the face-capped Re(1) center. In (I) the CO₂ plane is almost perpendicular to the N(1)—Re(1)—C(4) plane, whereas in (II) the CO₂ plane is almost coincident with the Re(1)—N(1)—O(4) plane. The CO₂ O—Re(2) bond lengths are increased slightly in (I) [2.178 (5) and 2.215 (5) Å] as compared with those in (II) [2.165 (4) and 2.175 (3) Å], due to increased crowding around this rhenium center in (I). The CO₂ C—Re(1) bond length is also consistent with an increased bond length

[2.104 (8) in (I), 2.089 (6) Å in (II)], possibly because of the change in orientation of the CO_2 group at Re(1) in (I). However, the change in orientation of the CO_2 group relative to the ligands bound to Re(1) and the slight changes in the O-Re bond lengths have little effect on the IR-stretching frequencies of the bridging CO₂ ligand as evidenced in DRIFTS spectra (Griffiths & de Haseth, 1986); the $\nu_{\rm oco}$ bands in (I) are at 1435 and 1279 cm⁻¹, while those in (II) are at 1437 and 1282 cm^{-1} (Gibson et al., 1994).

Fig. 1. ORTEPII (Johnson, 1976) plot of the title complex showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.

Experimental

Synthesis was carried out by the reaction of mer, trans-Re(CO)₃(PPh₃)₂(O₂CCF₃) with excess Cp*Re(CO)(NO)COOH in toluene solution at 358 K in the presence of Na₂CO₃ (1:4:4 molar ratio) over 16 h. The product was purified by recrystallization from CH₂Cl₂/hexane.

Crystal data

		С
Crystal data		C
$[\text{Re}_{2}(\text{CO}_{2})(\text{NO})(\text{C}_{10}\text{H}_{15})-$	Mo $K\alpha$ radiation	C
$M_r = 1190.27$	X = 0.71073 A Cell parameters from 25	C C
$\frac{MONOCIMIC}{P2_1/n}$	reflections $\theta = 15 - 18^{\circ}$	C C
a = 13.236(3) Å b = 17.146(5) Å	$\mu = 5.39 \text{ mm}^{-1}$ T = 296 K	C C
c = 20.781 (6) Å	Block $0.33 \times 0.20 \times 0.14$ mm	C
$B = 105.04 (2)^{\circ}$ V = 4595 (2) Å ³	Orange	C
Z = 4 $D_x = 1.721 \text{ Mg m}^{-3}$		C
Data collection		Ci Ci
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.019$ $\theta_{\rm max} = 25^{\circ}$	C(C(C(

$\omega/2\theta$ scans
Absorption correction:
ψ scans (North, Phillips
& Mathews, 1968)
$T_{\min} = 0.218, T_{\max} =$
0.340
8766 measured reflections
8559 independent reflections
5546 observed reflections

 $[I > 3\sigma(I)]$

Refinement

Refinement on F	$\Delta \rho_{\rm max} = 1.04 \ {\rm e} \ {\rm \AA}^{-3}$
R = 0.034	$\Delta \rho_{\rm min} = -1.03 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.034	Extinction correction:
S = 1.59	Zachariasen (1967)
5545 reflections	Extinction coefficient:
543 parameters	2.68×10^{-11}
H-atom parameters not	Atomic scattering factors
refined, located from Δ	from International Tables
maps	for X-ray Crystallography
$w = 1/\sigma^2(F)$	(1974, Vol. IV)
$(\Delta/\sigma)_{\rm max} = 0.03$	

 $h = -15 \rightarrow 0$

3 standard reflections

frequency: 60 min

intensity decay: 3.6%

 $k = 0 \rightarrow 20$ $l = -24 \rightarrow 24$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	y	z	B_{eq}
Re(1)	-0.28756 (3)	0.08073 (2)	0.17380 (2)	4.60(1)
Re(2)	().04831 (2)	0.17480(2)	0.17337(1)	2.378 (7)
P(1)	0.1056(2)	0.1078(1)	0.27784 (10)	2.74 (5)
P(2)	-0.0058(2)	0.2415 (1)	0.06848 (9)	2.75 (5)
O(1)	-0.1045 (4)	0.1853 (3)	0.1954(2)	2.9(1)
O(2)	-0.0716 (4)	0.0837 (3)	0.1428 (2)	2.9(1)
$O(3a)^{\dagger}$	-0.3574 (9)	0.2486 (7)	0.1409 (6)	6.9 (3)
O(3b)†	-0.350(2)	0.244 (2)	0.186(1)	9.5 (8)
$O(4a)^{\dagger}$	-0.212(1)	0.0741 (8)	0.3221 (7)	8.3 (4)
$O(4b)^{\dagger}$	-0.252 (2)	0.103(1)	0.314(1)	5.7 (5)
O(5)	0.1547 (5)	0.3230(4)	0.2336(3)	4.9 (2)
O(6)	0.2406 (5)	0.1187 (4)	0.1306(3)	5.4 (2)
N(1ab)	-0.3268(8)	0.1821(7)	0.1637 (5)	8.6 (3)
C(1)	-0.1382 (6)	0.1187 (5)	0.1690(4)	3.0(2)
C(4b)†	-0.273 (2)	0.102(2)	0.252(1)	3.8 (6)
C(4a)†	-0.239(1)	0.0791 (9)	0.2654 (7)	3.6 (3)
C(5)	0.1172 (6)	0.2646 (5)	0.2095 (4)	3.2 (2)
C(6)	0.1684 (6)	0.1427 (5)	0.1479 (4)	3.4 (2)
C(7)	-0.3203 (8)	-0.0503(5)	0.1543 (5)	4.9 (3)
C(8)	-0.4150 (8)	-0.0138 (7)	0.1575 (5)	5.6 (3)
C(9)	-0.4401 (7)	0.0406 (6)	0.1060(6)	5.8 (3)
C(10)	-0.3611 (9)	0.0367 (6)	0.0696 (5)	5.2 (3)
C(11)	-0.2867 (7)	-0.0201 (6)	0.0988 (5)	4.8 (3)
C(12)	-0.271 (1)	-0.1162 (7)	0.1960 (6)	9.6 (4)
C(13)	-0.483(1)	-0.0338 (8)	0.2039 (6)	10.0 (5)
C(14)	-0.5359 (9)	0.0912 (8)	0.0882 (8)	10.6 (5)
C(15)	-0.358 (1)	0.0816 (8)	0.0078 (6)	10.3 (5)
C(16)	-0.1995 (8)	-0.0501 (7)	0.0731 (6)	7.9 (4)
C(17)	0.0589 (6)	0.0078 (4)	0.2807 (4)	3.1 (2)
C(18)	0.0130 (7)	-0.0207(5)	0.3290(4)	4.4 (2)
C(19)	-0.0125 (9)	-0.0995 (6)	0.3279 (5)	5.8 (3)
C(20)	0.0104 (9)	-0.1500 (5)	0.2823 (6)	6.2 (3)
C(21)	0.0527 (9)	-0.1204 (6)	().2330(5)	6.1 (3)
C(22)	0.0770 (8)	-0.0423 (5)	0.2320(5)	5.0 (3)
C(23)	0.0765 (6)	0.1534 (4)	0.3514(4)	3.1 (2)
C(24)	0.1273 (6)	0.1296 (5)	0.4142 (4)	3.8 (2)
C(25)	0.1021 (7)	0.1606 (6)	0.4697 (4)	4.5 (2)
C(26)	0.0292 (7)	0.2181 (6)	0.4633 (4)	4.9 (3)
C(27)	-0.0197 (7)	0.2433 (6)	0.4016 (4)	5.1 (3)
C(28)	0.0024 (6)	0.2112 (5)	0.3459 (4)	3.7 (2)
C(29)	0.2476 (6)	0.0951 (5)	0.3025 (3)	3.0(2)

0.3102 (6)	0.1592 (5)	0.3025 (4)	4.4 (2)
0.4170(7)	0.1541 (5)	0.3224 (4)	4.8 (2)
0.4639(7)	0.0837 (6)	0.3415 (4)	4.7 (2)
0.4028 (7)	0.0196 (5)	0.3419 (5)	4.8 (3)
0.2952 (7)	0.0248 (5)	0.3230 (4)	4.3 (2)
-0.0871 (6)	0.1873 (5)	-0.0003(3)	2.9 (2)
-0.1748 (6)	0.2186 (5)	-0.0419(4)	3.5 (2)
-0.2297 (7)	0.1741 (6)	-0.0942 (4)	4.6 (2)
-0.1978 (7)	0.1009 (5)	-0.1063 (4)	4.3 (2)
-0.1103 (8)	0.0700 (5)	-0.0649(4)	4.9 (2)
0.0561 (7)	0.1128 (5)	-0.0119 (4)	3.9 (2)
-0.0758 (6)	0.3336 (4)	0.0684 (3)	2.8 (2)
-0.1354 (7)	0.3454 (5)	0.1150 (4)	3.9 (2)
-0.1914 (7)	0.4136(5)	0.1148 (4)	4.5 (2)
-0.1883 (7)	0.4698 (5)	0.0682 (5)	4.6 (2)
-0.1312(7)	0.4593 (5)	0.0219 (4)	3.9 (2)
-0.0764 (6)	0.3916(5)	0.0210 (4)	3.6(2)
0.1021 (6)	0.2725 (5)	0.0325 (4)	3.2 (2)
0.1067(7)	0.2567 (6)	-0.0315 (4)	4.9 (3)
0.1887 (9)	0.2840(7)	-0.0582 (5)	6.3 (3)
0.2658 (8)	0.3261 (7)	-0.0205 (6)	6.1 (3)
0.2636 (8)	0.3427(7)	0.0439 (6)	7.2 (3)
0.1806(8)	0.3161 (7)	0.0692 (5)	6.0(3)
	$\begin{array}{c} 0.3102\ (6)\\ 0.4170\ (7)\\ 0.4639\ (7)\\ 0.2952\ (7)\\ -0.0871\ (6)\\ -0.1748\ (6)\\ -0.2297\ (7)\\ -0.1978\ (7)\\ -0.1978\ (7)\\ -0.1978\ (7)\\ -0.1914\ (7)\\ -0.1914\ (7)\\ -0.1914\ (7)\\ -0.1914\ (7)\\ -0.1912\ (7)\\ -0.1912\ (7)\\ -0.0764\ (6)\\ 0.1021\ (6)\\ 0.1067\ (7)\\ 0.1887\ (9)\\ 0.2636\ (8)\\ 0.1806\ (8) \end{array}$	$\begin{array}{cccc} 0.3102\ (6) & 0.1592\ (5) \\ 0.4170\ (7) & 0.1541\ (5) \\ 0.4639\ (7) & 0.0837\ (6) \\ 0.4028\ (7) & 0.0196\ (5) \\ 0.2952\ (7) & 0.0248\ (5) \\ -0.0871\ (6) & 0.1873\ (5) \\ -0.0871\ (6) & 0.1873\ (5) \\ -0.1748\ (6) & 0.2186\ (5) \\ -0.297\ (7) & 0.1009\ (5) \\ -0.1978\ (7) & 0.1009\ (5) \\ -0.0758\ (6) & 0.336\ (4) \\ -0.1354\ (7) & 0.3454\ (5) \\ -0.1914\ (7) & 0.4136\ (5) \\ -0.1914\ (7) & 0.4136\ (5) \\ -0.1914\ (7) & 0.4136\ (5) \\ -0.1312\ (7) & 0.3454\ (5) \\ -0.1312\ (7) & 0.3454\ (5) \\ -0.0764\ (6) & 0.3916\ (5) \\ 0.1021\ (6) & 0.2725\ (5) \\ 0.1067\ (7) & 0.2657\ (6) \\ 0.1887\ (9) & 0.2840\ (7) \\ 0.2658\ (8) & 0.3261\ (7) \\ 0.2636\ (8) & 0.3427\ (7) \\ 0.1806\ (8) & 0.3161\ (7) \end{array}$	$\begin{array}{ccccccc} 0.3102 \ (6) & 0.1592 \ (5) & 0.3025 \ (4) \\ 0.4170 \ (7) & 0.1541 \ (5) & 0.3224 \ (4) \\ 0.4639 \ (7) & 0.0837 \ (6) & 0.3415 \ (4) \\ 0.4028 \ (7) & 0.0196 \ (5) & 0.3419 \ (5) \\ 0.2952 \ (7) & 0.0248 \ (5) & 0.3230 \ (4) \\ -0.0871 \ (6) & 0.1873 \ (5) & -0.0003 \ (3) \\ -0.0871 \ (6) & 0.1873 \ (5) & -0.0003 \ (3) \\ -0.1748 \ (6) & 0.2186 \ (5) & -0.0419 \ (4) \\ -0.297 \ (7) & 0.1741 \ (6) & -0.0942 \ (4) \\ -0.1978 \ (7) & 0.1009 \ (5) & -0.1063 \ (4) \\ -0.0561 \ (7) & 0.1128 \ (5) & -0.0119 \ (4) \\ -0.0561 \ (7) & 0.3356 \ (4) & 0.0684 \ (3) \\ -0.1914 \ (7) & 0.4136 \ (5) & 0.1150 \ (4) \\ -0.1914 \ (7) & 0.4136 \ (5) & 0.0210 \ (4) \\ -0.0764 \ (6) & 0.3916 \ (5) & 0.0210 \ (4) \\ 0.1021 \ (6) & 0.2725 \ (5) & 0.0325 \ (4) \\ 0.1067 \ (7) & 0.2567 \ (6) & -0.0315 \ (4) \\ 0.1887 \ (9) & 0.2840 \ (7) & -0.0582 \ (5) \\ 0.2658 \ (8) & 0.3261 \ (7) & 0.0439 \ (6) \\ 0.2656 \ (8) & 0.3427 \ (7) & 0.0439 \ (6) \\ 0.1806 \ (8) & 0.3161 \ (7) & 0.0692 \ (5) \end{array}$

† Partial occupancy (see below).

Table 2. Selected geometric parameters (Å)

	$\mathcal{K}(1) = \mathcal{K}(1)$	2.100(0)
54 (3)	Re(1)— $C(4a)$	1.87(1)
306 (9)	Re(1)C(8)	2.309 (9)
290 (10)	Re(1)—C(10)	2.290 (9)
328 (9)	Re(2) - P(1)	2.423 (2)
423 (2)	Re(2)—O(1)	2.180 (5)
215 (5)	Re(2)C(5)	1.859 (8)
368 (8)	P(1)—C(17)	1.829 (8)
832 (8)	P(1)—C(29)	1.847 (8)
834 (7)	P(2)—C(41)	1.831 (8)
835 (8)	O(1)—C(1)	1.302 (8)
285 (8)	O(3b) - N(1ab)	1.23 (3)
27 (1)	O(4b) - C(4b)	1.25 (3)
16 (2)	O(5)—C(5)	1.177 (9)
168 (9)		
	54 (3) 306 (9) 290 (10) 328 (9) 423 (2) 215 (5) 568 (8) 332 (8) 333 (8) 334 (7) 335 (8) 285 (8) 27 (1) 16 (2) 168 (9)	A(3) Re(1) - C(4a) 306 (9) Re(1) - C(8) 290 (10) Re(1) - C(10) 328 (9) Re(2) - P(1) 423 (2) Re(2) - O(1) 215 (5) Re(2) - C(5) 568 (8) P(1) - C(17) 332 (8) P(1) - C(17) 335 (8) O(1) - C(1) 285 (8) O(3b) - N(1ab) 27 (1) O(4b) - C(4b) 16 (2) O(5) - C(5) 168 (9) C(5)

Range for phenyl C—C bond distances is 1.35-1.41 Å [average 1.38 (1) Å]. Range for internal Cp* C—C bond distances is 1.40-1.42 Å [average 1.41 (1) Å]. Range for *ipso*-C to Cp* C—C bond distances is 1.47-1.51 Å [average 1.50 (1) Å].

Atomic scattering factors were taken from *International Tables* for X-ray Crystallography (1974, Vol. IV); corrections for anomalous-dispersion effects were made. The structure was solved using heavy-atom Patterson methods (SAPI91; Fan, 1991) and expanded using Fourier techniques. All non-H atoms (not involved in the carbonyl or nitrosyl disorder) were refined anisotropically. H atoms were located by Δ maps but were not refined. The carbonyl disorder was modeled with C— O groups of occupancies 2/3 (C4a, O4a) and 1/3 (C4b, O4b). The nitrosyl was modeled with a common N atom (N1ab) and two O atoms having occupancies of 2/3 (O3a) and 1/3 (O3b). All computations were performed using the TEXSAN package (Molecular Structure Corporation, 1994).

Support of this work by the United States Department of Energy, Division of Chemical Sciences (Office of Basic Energy Sciences), is gratefully acknowledged. The X-ray equipment was purchased with assistance from the National Science Foundation (grant No. CHE-9016978). Support of the Molecular Structure Laboratory through the NSF/KY EPSCoR program (grant No. EHR-9108764) is also gratefully acknowledged. Lists of structure factors, anisotropic displacement parameters. Hatom coordinates and complete geometry, along with a figure showing the disorder in the molecule, have been deposited with the IUCr (Reference: BK1177). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Fan, H.-F. (1991). SAP191. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
- Gibson, D. H., Mehta, J. M., Ye, M., Richardson, J. F. & Mashuta, M. S. (1994). Organometallics, 13, 1070–1072.
- Gibson, D. H., Ye, M., Sleadd, B. A., Mehta, J. M., Mbadike, O. P., Richardson, J. F. & Mashuta, M. S. (1995). *Organometallics*, 14, 1242-1255.
- Griffiths, P. W. & de Haseth, J. A. (1986). Fourier Transform Infrared Spectroscopy, ch. 5. New York: Wiley.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1994). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1996). C52, 854-858

Two 'Ruthenium-Blue' Precursors: Tri- μ -chloro-hexakis(dimethylphenylarsine)diruthenium(II) Trifluoromethanesulfonate and Tri- μ -bromo-hexakis(trimethylarsine)diruthenium(II) Trifluoromethanesulfonate

GRAHAM A. HEATH, DAVID C. R. HOCKLESS* AND BRETT D. YEOMANS

Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT 0200, Australia. E-mail: david@rschp1.anu.edu.au

(Received 19 July 1995; accepted 8 September 1995)

Abstract

Confacial bi-octahedral $[Ru_2(\mu-Cl)_3(AsMe_2Ph)_6]CF_3-SO_3$, (1), and $[Ru_2(\mu-Br)_3(AsMe_3)_6]CF_3SO_3$, (2), are the first tertiary-arsine-capped systems within the wider class of redox-active $[L_3Ru(\mu-X)_3RuL_3]^{+/2+}$ complexes $(L = NR_3, PR_3 \text{ or } AsR_3; X = Cl \text{ or } Br)$ to be structurally characterized. Compounds (1) and (2) have measured internuclear separations and mean bridgehead angles $(Ru^{II} \cdots Ru^{II}/Ru - X - Ru)$ of 3.275 (2)/83.5 and 3.413 (1) Å/81.8°, respectively.